Trigonometry

Study of Angles I

Trigonometry DLA Series

Complementary & Supplementary Angles

In this DLA, we are are going to look at angles that have a sum of 90° and $180^\circ.$

When two angles have a sum of 90°, they are called **Complementary Angles**. When we assume

When we assume that $L_1 \perp L_2$, they form a 90° angle. Therefore

 $m \angle C + m \angle D = 90^{\circ}.$

Angles *C* and *D* are called complementary angles.

When two angles have a sum of 180°, they are called **Supplementary Angles**. When we split a

When we split a straight angle which has a measure of 180° into two angles *A* and *B*,

therefore $m \angle A + m \angle B = 180^{\circ}$.

Angles A and B are called supplementary angles.

When two angles are **Complementary Angles**, they are **Complement** of each other.

When two angles are **Supplementary Angles**, they are **Supplement** of each other.

Туре	First Angle	Second Angle
Complementary Angles	x°	(90 – x)°
Supplementary Angles	x°	$(180 - x)^{\circ}$

Find two complementary angles such that one of them is 20° more than its complement.

Solution:

Let x be the measure of one of the angles, then its complement has to be 90 - x.

When we assume that $L_1 \perp L_2$, they form a 90° angle.

 $m \angle C = x^{\circ},$ $m \angle D = (90 - x)^{\circ},$

$$m \angle D = m \angle C + 20^{\circ}$$

$$\boxed{m \angle D} = \boxed{m \angle C} + 20^{\circ}$$
$$\boxed{90 - x} = \boxed{x} + 20$$

(Given Information)

(Substitution)

90 - x - x - 90 = x + 20 - x - 90 (Subtraction Property) -2x + 0 = -70 + 0 (Inverse & Simplify) -2x = -70 (Identity) x = 35 (Division Property)

So the angle is 35° , and its complement is $90 - 35 = 55^{\circ}$.

35° and 55°

Find two supplementary angles such that one of them is 30° less than 4 times its supplement.

Solution:

Let x be the measure of one of the angles, then its supplement has to be 180 - x.

 $m \angle A = x^{\circ}$ $m \angle B = (180 - x)^{\circ}$

$$m \angle A = 4 \cdot m \angle B - 30$$

$$\underline{m\angle A} = \underline{4 \cdot m\angle C} - 30^{\circ}$$

$$x = 4(180 - x) - 30$$

$$x = 720 - 4x - 30$$

$$x = 690 - 4x$$

$$x + 4x = 690 - 4x + 4x$$
$$5x = 690$$
$$x = 138$$

(Given Information)

(Substitution)

(Distribution Property)

(Simplify)

(Addition Property)

(Inverse & Simplify)

(Division Property)

So the angle is 138° , and its supplement is $180 - 138 = 42^{\circ}$.

 42° and 138°

Find the measure of an angle such that the sum of its complement and its supplement is 130° .

Solution:

Let x be the measure of one of the angles, then its supplement has to be 180 - x.

$$m \angle A = x^{\circ}$$

$$m \angle C = (90 - x)^{\circ}$$

$$m \angle S = (180 - x)^{\circ}$$

 $m \angle C + m \angle S = 130^{\circ}$

$$m \angle C$$
 + $m \angle S$ = 130°

$$90 - x + 180 - x = 130$$

$$270 - 2x = 130$$

$$270 - 2x - 270 = 130 - 270$$

$$- 2x + 0 = -140$$

$$- 2x = -140$$

$$x = 70$$

(Given Information)

(Substitution)

(Simplify)

(Subtraction Property)

(Inverse & Simplify)

(Identity)

(Division Property)

So the angle is 70° .

The angle is 70°

Find the measure of an angle such that the difference of twice its supplement and three times its complement is 110° .

Solution:

Let x be the measure of one of the angles, then its supplement has to be 180 - x.

$$m \angle A = x^{\circ}$$

$$m \angle C = (90 - x)^{\circ}$$

$$m \angle S = (180 - x)^{\circ}$$

 $2 \cdot m \angle S - 3 \cdot m \angle C = 110^{\circ}$

$$2 \cdot m \angle S - 3 \cdot m \angle C = 110^{\circ}$$
 (Given Information)

$$2(180 - x) - 3(90 - x) = 110$$
 (Substitution)

$$360 - 2x - 270 + 3x = 110$$
 (Distibution Proporty)

$$x + 90 = 110$$
 (Simplify)

$$x + 90 - 90 = 110 - 90$$
 (Subtraction Property)

$$x + 0 = 20$$
 (Inverse & Simplify)

$$x = 20$$
 (Identity)

So the angle is 20° .

The angle is 20°

Trigonometry

Study of Angles I

Start at ELAC, Go Anywhere