Trigonometry DLA Series

Complementary \& Supplementary
 Angles

In this DLA, we are are going to look at angles that have a sum of 90° and 180°.

When two angles have a sum of 90°, they are called
Complementary Angles.
When we assume that
$L_{1} \perp L_{2}$, they form a
90° angle. Therefore

$m \angle C+m \angle D=90^{\circ}$.

Angles C and D are called complementary angles.

When two angles have a sum of 180°, they are called Supplementary Angles.

When we split a straight angle which has a measure of 180° into two angles A and B,

therefore
$m \angle A+m \angle B=180^{\circ}$.

Angles A and B are called
supplementary angles.

When two angles are Complementary Angles, they are Complement of each other.

When two angles are Supplementary Angles, they are Supplement of each other.

Type	First Angle	Second Angle
Complementary Angles	x°	$(90-x)^{\circ}$
Supplementary Angles	x°	$(180-x)^{\circ}$

Example:

Find two complementary angles such that one of them is 20° more than its complement.

Solution:

Let x be the measure of one of the angles, then its complement has to be $90-x$.

When we assume that
$L_{1} \perp L_{2}$, they form a

$$
\begin{aligned}
& \begin{array}{l}
90^{\circ} \text { angle. } \\
\\
\\
m \angle C=x^{\circ}, \\
m \angle D=(90-x)^{\circ}, \\
L_{2} \\
\longrightarrow
\end{array} m \angle D=m \angle C+20^{\circ}
\end{aligned}
$$

Solution(continued):

$$
\begin{aligned}
m \angle D & =m \angle C+20^{\circ} & & \text { (Given Information) } \\
90-x & =x+20 & & \text { (Substitution) } \\
90-x-x-90 & =x+20-x-90 & & \text { (Subtraction Property) } \\
-2 x+0 & =-70+0 & & \text { (Inverse \& Simplify) } \\
-2 x & =-70 & & \text { (Identity) } \\
x & =35 & & \text { (Division Property) }
\end{aligned}
$$

So the angle is 35°, and its complement is $90-35=55^{\circ}$.

$$
35^{\circ} \text { and } 55^{\circ}
$$

Example:

Find two supplementary angles such that one of them is 30° less than 4 times its supplement.

Solution:

Let x be the measure of one of the angles, then its supplement has to be $180-x$.

Solution(continued):

$$
\begin{aligned}
\hline m \angle A & =4 \cdot m \angle C-30^{\circ} & & \text { (Given Information) } \\
x & =4(180-x)-30 & & \text { (Substitution) } \\
x & =720-4 x-30 & & \text { (Distribution Property) } \\
x & =690-4 x & & \text { (Simplify) } \\
x+4 x & =690-4 x+4 x & & \text { (Addition Property) } \\
5 x & =690 & & \text { (Inverse \& Simplify) } \\
x & =138 & & \text { (Division Property) }
\end{aligned}
$$

So the angle is 138°, and its supplement is $180-138=42^{\circ}$.

$$
42^{\circ} \text { and } 138^{\circ}
$$

Example:

Find the measure of an angle such that the sum of its complement and its supplement is 130°.

Solution:

Let x be the measure of one of the angles, then its supplement has to be $180-x$.

$$
\begin{aligned}
& m \angle A=x^{\circ} \\
& m \angle C=(90-x)^{\circ} \\
& m \angle S=(180-x)^{\circ} \\
& m \angle C+m \angle S=130^{\circ}
\end{aligned}
$$

Solution(continued):

$$
\begin{aligned}
\boxed{m \angle C}+m \angle S & =130^{\circ} & & \text { (Given Information) } \\
\boxed{90-x}+\sqrt{m 0-x} & =130 & & \text { (Substitution) } \\
270-2 x & =130 & & \text { (Simplify) } \\
270-2 x-270 & =130-270 & & \text { (Subtraction Property) } \\
-2 x+0 & =-140 & & \text { (Inverse \& Simplify) } \\
-2 x & =-140 & & \text { (Identity) } \\
x & =70 & & \text { (Division Property) }
\end{aligned}
$$

So the angle is 70°.
The angle is 70°

Example:

Find the measure of an angle such that the difference of twice its supplement and three times its complement is 110°.

Solution:

Let x be the measure of one of the angles, then its supplement has to be $180-x$.

$$
\begin{aligned}
& m \angle A=x^{\circ} \\
& m \angle C=(90-x)^{\circ} \\
& m \angle S=(180-x)^{\circ}
\end{aligned}
$$

$2 \cdot m \angle S-3 \cdot m \angle C=110^{\circ}$

Solution(continued):

$$
\begin{aligned}
2 \cdot m \angle S-3 \cdot m \angle C & =110^{\circ} & & \text { (Given Information) } \\
& =110 & & \text { (Substitution) } \\
360-2 x-270+3 x & =110 & & \text { (Distibution Propoerty) } \\
x+90 & =110 & & \text { (Simplify) } \\
x+90-90 & =110-90 & & \text { (Subtraction Property) } \\
x+0 & =20 & & \text { (Inverse \& Simplify) } \\
x & =20 & & \text { (Identity) }
\end{aligned}
$$

So the angle is 20°.
The angle is 20°

Start at ELAC, Go Anywhere

